FP2 questions from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002)

The following pages contain questions from past papers which could conceivably appear on Edexcel's new FP2 papers from June 2009 onwards.

Mark schemes are available on a separate document, originally sent with this one.

1. Find the set of values for which

$$
\begin{equation*}
|x-1|>6 x-1 \tag{5}
\end{equation*}
$$

2. (a) Find the general solution of the differential equation

$$
t \frac{\mathrm{~d} v}{\mathrm{~d} t}-v=t, \quad t>0
$$

and hence show that the solution can be written in the form $v=t(\ln t+c)$, where c is an arbitrary constant.
(b) This differential equation is used to model the motion of a particle which has speed $v \mathrm{~m} \mathrm{~s}^{-1}$ at time $t \mathrm{~s}$. When $t=2$ the speed of the particle is $3 \mathrm{~m} \mathrm{~s}^{-1}$. Find, to 3 significant figures, the speed of the particle when $t=4$.
3. (a) Show that $y=\frac{1}{2} x^{2} \mathrm{e}^{x}$ is a solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=\mathrm{e}^{x} \tag{4}
\end{equation*}
$$

(b) Solve the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=\mathrm{e}^{x}
$$

given that at $x=0, y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=2$.
4. The curve C has polar equation $r=3 a \cos \theta,-\frac{\pi}{2} \leq \frac{\pi}{2}$. The curve D has polar equation $r=a(1+\cos \theta),-\pi \leq \theta<\pi$. Given that a is a positive constant,
(a) sketch, on the same diagram, the graphs of C and D, indicating where each curve cuts the initial line.

The graphs of C intersect at the pole O and at the points P and Q.
(b) Find the polar coordinates of P and Q.
(c) Use integration to find the exact value of the area enclosed by the curve D and the lines $\theta=0$ and $\theta=\frac{\pi}{3}$.

The region R contains all points which lie outside D and inside C.

Given that the value of the smaller area enclosed by the curve C and the line $\theta=\frac{\pi}{3}$ is

$$
\frac{3 a^{2}}{16}(2 \pi-3 \sqrt{ } 3)
$$

(d) show that the area of R is πa^{2}.
5. Using algebra, find the set of values of x for which

$$
2 x-5>\frac{3}{x} .
$$

6. (a) Find the general solution of the differential equation

$$
\begin{equation*}
\cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}+(\sin x) y=\cos ^{3} x \tag{6}
\end{equation*}
$$

(b) Show that, for $0 \leq x \leq 2 \pi$, there are two points on the x-axis through which all the solution curves for this differential equation pass.
(c) Sketch the graph, for $0 \leq x \leq 2 \pi$, of the particular solution for which $y=0$ at $x=0$.
7. (a) Find the general solution of the differential equation

$$
\begin{equation*}
2 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+7 \frac{\mathrm{~d} y}{\mathrm{~d} t}+3 y=3 t^{2}+11 t \tag{8}
\end{equation*}
$$

(b) Find the particular solution of this differential equation for which $y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=1$ when $t=0$.
(c) For this particular solution, calculate the value of y when $t=1$.
8. Figure 1

The curve C shown in Fig. 1 has polar equation

$$
r=a(3+\sqrt{ } 5 \cos \theta), \quad-\pi \leq \theta<\pi .
$$

(a) Find the polar coordinates of the points P and Q where the tangents to C are parallel to the initial line.

The curve C represents the perimeter of the surface of a swimming pool. The direct distance from P to Q is 20 m .
(b) Calculate the value of a.
(c) Find the area of the surface of the pool.
9. (a) The point P represents a complex number z in an Argand diagram. Given that

$$
|z-2 \mathrm{i}|=2|z+\mathrm{i}|,
$$

(i) find a cartesian equation for the locus of P, simplifying your answer.
(ii) sketch the locus of P.
(b) A transformation T from the z-plane to the w-plane is a translation $-7+11$ i followed by an enlargement with centre the origin and scale factor 3.

Write down the transformation T in the form

$$
w=a z+b, \quad a, b \in \mathbb{C} .
$$

10.

$$
y \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}+y=0 .
$$

(a) Find an expression for $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}$.

Given that $y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=1$ at $x=0$,
(b) find the series solution for y, in ascending powers of x, up to an including the term in x^{3}.
(c) Comment on whether it would be sensible to use your series solution to give estimates for y at $x=0.2$ and at $x=50$.
11.

$$
z=4\left(\cos \frac{\pi}{4}+\mathrm{i} \sin \frac{\pi}{4}\right), \text { and } w=3\left(\cos \frac{2 \pi}{3}+\mathrm{i} \sin \frac{2 \pi}{3}\right) .
$$

Express $z w$ in the form $r(\cos \theta+\mathrm{i} \sin \theta), r>0,-\pi<\theta<\pi$.
12. (a) Express $\frac{2}{(r+1)(r+3)}$ in partial fractions.
(b) Hence prove that $\sum_{r=1}^{n} \frac{2}{(r+1)(r+3)} \equiv \frac{n(5 n+13)}{6(n+2)(n+3)}$.
13. (a) Sketch, on the same axes, the graphs with equation $y=|2 x-3|$, and the line with equation $y=5 x-1$.
(b) Solve the inequality $|2 x-3|<5 x-1$.
14. (a) Use the substitution $y=v x$ to transform the equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(4 x+y)(x+y)}{x^{2}}, x>0 \tag{I}
\end{equation*}
$$

into the equation

$$
\begin{equation*}
x \frac{\mathrm{~d} v}{\mathrm{~d} x}=(2+v)^{2} \tag{II}
\end{equation*}
$$

(b) Solve the differential equation II to find v as a function of x.
(c) Hence show that

$$
y=-2 x-\frac{x}{\ln x+c} \text {, where } c \text { is an arbitrary constant, }
$$

is a general solution of the differential equation I.
15. (a) Find the value of λ for which $\lambda x \cos 3 x$ is a particular integral of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+9 y=-12 \sin 3 x . \tag{4}
\end{equation*}
$$

(b) Hence find the general solution of this differential equation.

The particular solution of the differential equation for which $y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=2$ at $x=0$, is $y=\mathrm{g}(x)$.
(c) Find $\mathrm{g}(x)$.
(d) Sketch the graph of $y=\mathrm{g}(x), 0 \leq x \leq \pi$.
16.

Figure 1

Figure 1 shows a sketch of the cardioid C with equation $r=a(1+\cos \theta),-\pi<\theta \leq \pi$. Also shown are the tangents to C that are parallel and perpendicular to the initial line. These tangents form a rectangle $W X Y Z$.
(a) Find the area of the finite region, shaded in Fig. 1, bounded by the curve C.
(b) Find the polar coordinates of the points A and B where $W Z$ touches the curve C.
(c) Hence find the length of $W X$.

Given that the length of $W Z$ is $\frac{3 \sqrt{3} a}{2}$,
(d) find the area of the rectangle $W X Y Z$.

A heart-shape is modelled by the cardioid C, where $a=10 \mathrm{~cm}$. The heart shape is cut from the rectangular card $W X Y Z$, shown in Fig. 1.
(e) Find a numerical value for the area of card wasted in making this heart shape.
17. (a) Express as a simplified fraction $\frac{1}{(r-1)^{2}}-\frac{1}{r^{2}}$.
(b) Prove, by the method of differences, that

$$
\begin{equation*}
\sum_{r=2}^{n} \frac{2 r-1}{r^{2}(r-1)^{2}}=1-\frac{1}{n^{2}} . \tag{3}
\end{equation*}
$$

18. Solve the inequality $\frac{1}{2 x+1}>\frac{x}{3 x-2}$.
19. (a) Using the substitution $t=x^{2}$, or otherwise, find

$$
\begin{equation*}
\int x^{3} \mathrm{e}^{-x^{2}} \mathrm{~d} x \tag{6}
\end{equation*}
$$

(b) Find the general solution of the differential equation

$$
\begin{equation*}
x \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y=x \mathrm{e}^{-x^{2}}, \quad x>0 . \tag{4}
\end{equation*}
$$

A logo is designed which consists of two overlapping closed curves.
The polar equations of these curves are

$$
\begin{array}{ll}
r=a(3+2 \cos \theta) & \text { and } \\
r=a(5-2 \cos \theta), & 0 \leq \theta<2 \pi .
\end{array}
$$

Figure 1 is a sketch (not to scale) of these two curves.
(a) Write down the polar coordinates of the points A and B where the curves meet the initial line.
(b) Find the polar coordinates of the points C and D where the two curves meet.
(c) Show that the area of the overlapping region, which is shaded in the figure, is

$$
\frac{a^{2}}{3}(49 \pi-48 \sqrt{ } 3) .
$$

21.

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} t}+9 y=4 \mathrm{e}^{3 t}, \quad t \geq 0
$$

(a) Show that $K t^{2} \mathrm{e}^{3 t}$ is a particular integral of the differential equation, where K is a constant to be found.
(b) Find the general solution of the differential equation.

Given that a particular solution satisfies $y=3$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=1$ when $t=0$,
(c) find this solution.

Another particular solution which satisfies $y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=0$ when $t=0$, has equation

$$
y=\left(1-3 t+2 t^{2}\right) \mathrm{e}^{3 t} .
$$

(d) For this particular solution draw a sketch graph of y against t, showing where the graph crosses the t-axis. Determine also the coordinates of the minimum of the point on the sketch graph.
22. (i) (a) On the same Argand diagram sketch the loci given by the following equations.

$$
\begin{align*}
& |z-1|=1 \\
& \arg (z+1)=\frac{\pi}{12}, \\
& \arg (z+1)=\frac{\pi}{2} \tag{4}
\end{align*}
$$

(b) Shade on your diagram the region for which

$$
\begin{equation*}
|z-1| \leq 1 \quad \text { and } \quad \frac{\pi}{12} \leq \arg (z+1) \leq \frac{\pi}{2} . \tag{1}
\end{equation*}
$$

(ii) (a) Show that the transformation

$$
w=\frac{z-1}{z}, \quad z \neq 0,
$$

maps $|z-1|=1$ in the z-plane onto $|w|=|w-1|$ in the w-plane.

The region $|z-1| \leq 1$ in the z-plane is mapped onto the region T in the w-plane.
(b) Shade the region T on an Argand diagram.
23. (a) Use de Moivre's theorem to show that

$$
\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta
$$

(b) Hence find 3 distinct solutions of the equation $16 x^{5}-20 x^{3}+5 x+1=0$, giving your answers to 3 decimal places where appropriate.
24. Prove by the method of differences that $\sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1), n>1$.
25.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+y\left(1+\frac{3}{x}\right)=\frac{1}{x^{2}}, \quad x>0 .
$$

(a) Verify that $x^{3} \mathrm{e}^{x}$ is an integrating factor for the differential equation.
(b) Find the general solution of the differential equation.
(c) Given that $y=1$ at $x=1$, find y at $x=2$.
26. (a) Sketch, on the same axes, the graph of $y=|(x-2)(x-4)|$, and the line with equation $y=6-2 x$.
(b) Find the exact values of x for which $|(x-2)(x-4)|=6-2 x$.
(c) Hence solve the inequality $|(x-2)(x-4)|<6-2 x$.
27.

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+5 y=65 \sin 2 x, x>0
$$

(a) Find the general solution of the differential equation.
(b) Show that for large values of x this general solution may be approximated by a sine function and find this sine function.
28. (a) Sketch the curve with polar equation

$$
\begin{equation*}
r=3 \cos 2 \theta, \quad-\frac{\pi}{4} \leq \theta<\frac{\pi}{4} . \tag{2}
\end{equation*}
$$

(b) Find the area of the smaller finite region enclosed between the curve and the half-line $\theta=\frac{\pi}{6}$.
(c) Find the exact distance between the two tangents which are parallel to the initial line.
29. Find the complete set of values of x for which

$$
\left|x^{2}-2\right|>2 x
$$

30. (a) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}+2 y=x \tag{5}
\end{equation*}
$$

Given that $y=1$ at $x=0$,
(b) find the exact values of the coordinates of the minimum point of the particular solution curve,
(c) draw a sketch of this particular solution curve.
31. (a) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} t}+2 y=2 \mathrm{e}^{-t} \tag{6}
\end{equation*}
$$

(b) Find the particular solution that satisfies $y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=1$ at $t=0$.

Figure 1 is a sketch of the two curves C_{1} and C_{2} with polar equations

$$
C_{1}: r=3 a(1-\cos \theta), \quad-\pi \leq \theta<\pi
$$

and

$$
C_{2}: r=a(1+\cos \theta),
$$

$$
-\pi \leq \theta<\pi .
$$

The curves meet at the pole O, and at the points A and B.
(a) Find, in terms of a, the polar coordinates of the points A and B.
(b) Show that the length of the line $A B$ is $\frac{3 \sqrt{ } 3}{2} a$.

The region inside C_{2} and outside C_{1} is shown shaded in Fig. 1.
(c) Find, in terms of a, the area of this region.

A badge is designed which has the shape of the shaded region.
Given that the length of the line $A B$ is 4.5 cm ,
(d) calculate the area of this badge, giving your answer to three significant figures.
33. Given that $y=\tan x$,
(a) find $\frac{\mathrm{d} y}{\mathrm{~d} x}, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}$ and $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}$.
(b) Find the Taylor series expansion of $\tan x$ in ascending powers of $\left(x-\frac{\pi}{4}\right)$ up to and including the term in $\left(x-\frac{\pi}{4}\right)^{3}$.
(c) Hence show that $\tan \frac{3 \pi}{10} \approx 1+\frac{\pi}{10}+\frac{\pi^{2}}{200}+\frac{\pi^{3}}{3000}$.
34. (a) Prove by induction that

$$
\frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}}\left(\mathrm{e}^{x} \cos x\right)=2^{\frac{1}{2} n} \mathrm{e}^{x} \cos \left(x+\frac{1}{4} n \pi\right), \quad n \geq 1 .
$$

(b) Find the Maclaurin series expansion of $\mathrm{e}^{x} \cos x$, in ascending powers of x, up to and including the term in x^{4}.
35. The transformation T from the complex z-plane to the complex w-plane is given by

$$
w=\frac{z+1}{z+\mathrm{i}}, \quad z \neq-\mathrm{i} .
$$

(a) Show that T maps points on the half- $\operatorname{line} \arg (z)=\frac{\pi}{4}$ in the z-plane into points on the circle
$|w|=1$ in the w-plane.
(b) Find the image under T in the w-plane of the circle $|z|=1$ in the z-plane.
(c) Sketch on separate diagrams the circle $|z|=1$ in the z-plane and its image under T in the w-plane.
(d) Mark on your sketches the point P, where $z=\mathrm{i}$, and its image Q under T in the w-plane.
36. (a) Sketch the graph of $y=|x-2 a|$, given that $a>0$.
(b) Solve $|x-2 a|>2 x+a$, where $a>0$.
37. Find the general solution of the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+2 y \cot 2 x=\sin x, \quad 0<x<\frac{\pi}{2}
$$

giving your answer in the form $y=\mathrm{f}(x)$.
38. (a) Express $\frac{1}{r(r+2)}$ in partial fractions.
(b) Hence prove, by the method of differences, that

$$
\begin{equation*}
\sum_{r=1}^{n} \frac{4}{r(r+2)}=\frac{n(3 n+5)}{(n+1)(n+2)} \tag{5}
\end{equation*}
$$

(c) Find the value of $\sum_{r=50}^{100} \frac{4}{r(r+2)}$, to 4 decimal places.
39. (a) Show that the transformation $y=x v$ transforms the equation

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(2+9 x^{2}\right) y=x^{5}, \tag{I}
\end{equation*}
$$

into the equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}+9 v=x^{2} \tag{5}
\end{equation*}
$$

II
(b) Solve the differential equation II to find v as a function of x.
(c) Hence state the general solution of the differential equation I.
40. The curve C has polar equation

$$
r=6 \cos \theta, \quad-\frac{\pi}{2} \leq \theta<\frac{\pi}{2}
$$

and the line D has polar equation $\quad r=3 \sec \left(\frac{\pi}{3}-\theta\right), \quad-\frac{\pi}{6} \leq \theta<\frac{5 \pi}{6}$.
(a) Find a cartesian equation of C and a cartesian equation of D.
(b) Sketch on the same diagram the graphs of C and D, indicating where each cuts the initial line.

The graphs of C and D intersect at the points P and Q.
(c) Find the polar coordinates of P and Q.
41. (a) By expressing $\frac{2}{4 r^{2}-1}$ in partial fractions, or otherwise, prove that

$$
\begin{equation*}
\sum_{r=1}^{n} \frac{2}{4 r^{2}-1}=1-\frac{1}{2 n+1} \tag{3}
\end{equation*}
$$

(b) Hence find the exact value of $\sum_{r=11}^{20} \frac{2}{4 r^{2}-1}$.
42. Find the general solution of the differential equation

$$
(x+1) \frac{\mathrm{d} y}{\mathrm{~d} x}+2 y=\frac{1}{x}, \quad x>0 .
$$

giving your answer in the form $y=\mathrm{f}(x)$.
43. (a) On the same diagram, sketch the graphs of $y=\left|x^{2}-4\right|$ and $y=|2 x-1|$, showing the coordinates of the points where the graphs meet the axes.
(b) Solve $\left|x^{2}-4\right|=|2 x-1|$, giving your answers in surd form where appropriate.
(c) Hence, or otherwise, find the set of values of x for which of $\left|x^{2}-4\right|>|2 x-1|$.
44. (a) Find the general solution of the differential equation

$$
\begin{equation*}
2 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}+5 \frac{\mathrm{~d} x}{\mathrm{~d} t}+2 x=2 t+9 \tag{6}
\end{equation*}
$$

(b) Find the particular solution of this differential equation for which $x=3$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=-1$ when $t=0$.

The particular solution in part (b) is used to model the motion of a particle P on the x-axis. At time t seconds $(t \geq 0), P$ is x metres from the origin O.
(c) Show that the minimum distance between O and P is $\frac{1}{2}(5+\ln 2) \mathrm{m}$ and justify that the distance is a minimum.
45.

Figure 1

The curve C which passes through O has polar equation

$$
r=4 a(1+\cos \theta), \quad-\pi<\theta \leq \pi
$$

The line l has polar equation

$$
r=3 a \sec \theta,-\frac{\pi}{2}<\theta<\frac{\pi}{2} .
$$

The line l cuts C at the points P and Q, as shown in Figure 1 .
(a) Prove that $P Q=6 \sqrt{ } 3 a$.

The region R, shown shaded in Figure 1, is bounded by l and C.
(b) Use calculus to find the exact area of R.
46. A complex number z is represented by the point P in the Argand diagram. Given that

$$
|z-3 \mathrm{i}|=3
$$

(a) sketch the locus of P.
(b) Find the complex number z which satisfies both $|z-3 \mathrm{i}|=3$ and $\arg (z-3 \mathrm{i})=\frac{3}{4} \pi$.

The transformation T from the z-plane to the w-plane is given by

$$
w=\frac{2 \mathrm{i}}{w} .
$$

(c) Show that T maps $|z-3 \mathrm{i}|=3$ to a line in the w-plane, and give the cartesian equation of this line.
47. (a) Given that $z=\mathrm{e}^{\mathrm{i} \theta}$, show that

$$
z^{n}-\frac{1}{z^{n}}=2 i \sin n \theta
$$

where n is a positive integer.
(b) Show that

$$
\begin{equation*}
\sin ^{5} \theta=\frac{1}{16}(\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta) . \tag{5}
\end{equation*}
$$

(c) Hence solve, in the interval $0 \leq \theta<2 \pi$,

$$
\begin{equation*}
\sin 5 \theta-5 \sin 3 \theta+6 \sin \theta=0 \tag{5}
\end{equation*}
$$

48. Find the set of values of x for which

$$
\begin{equation*}
\frac{x^{2}}{x-2}>2 x \tag{6}
\end{equation*}
$$

49. (a) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} x}{\mathrm{~d} t}+5 x=0 \tag{4}
\end{equation*}
$$

(b) Given that $x=1$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=1$ at $t=0$, find the particular solution of the differential equation, giving your answer in the form $x=\mathrm{f}(t)$.
(c) Sketch the curve with equation $x=\mathrm{f}(t), 0 \leq t \leq \pi$, showing the coordinates, as multiples of π, of the points where the curve cuts the t-axis.
50. (a) Show that the substitution $y=v x$ transforms the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 x-4 y}{4 x+3 y} \tag{I}
\end{equation*}
$$

into the differential equation

$$
\begin{equation*}
x \frac{\mathrm{~d} v}{\mathrm{~d} x}=-\frac{3 v^{2}+8 v-3}{3 v+4} \tag{II}
\end{equation*}
$$

(b) By solving differential equation (II), find a general solution of differential equation (I).
(c) Given that $y=7$ at $x=1$, show that the particular solution of differential equation (I) can be written as

$$
\begin{equation*}
(3 y-x)(y+3 x)=200 . \tag{5}
\end{equation*}
$$

[FP1/P4 January 2006 Qn 6]
51. Figure 1

A curve C has polar equation $r^{2}=a^{2} \cos 2 \theta, 0 \leq \theta \leq \frac{\pi}{4}$. The line l is parallel to the initial line, and l is the tangent to C at the point P, as shown in Figure 1.
(a) (i) Show that, for any point on $C, r^{2} \sin ^{2} \theta$ can be expressed in terms of $\sin \theta$ and a only.
(ii) Hence, using differentiation, show that the polar coordinates of P are $\left(\frac{a}{\sqrt{ } 2}, \frac{\pi}{6}\right)$.

The shaded region R, shown in Figure 1, is bounded by C, the line l and the half-line with equation $\theta=\frac{\pi}{2}$.
(b) Show that the area of R is $\frac{a^{2}}{16}(3 \sqrt{ } 3-4)$.
52. Solve the equation

$$
z^{5}=\mathrm{i}
$$

giving your answers in the form $\cos \theta+\mathrm{i} \sin \theta$.
53.

$$
(1+2 x) \frac{\mathrm{d} y}{\mathrm{~d} x}=x+4 y^{2} .
$$

(a) Show that

$$
\begin{equation*}
(1+2 x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=1+2(4 y-1) \frac{\mathrm{d} y}{\mathrm{~d} x} . \tag{1}
\end{equation*}
$$

(b) Differentiate equation (1) with respect to x to obtain an equation involving

$$
\begin{equation*}
\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}, \frac{\mathrm{~d} y}{\mathrm{~d} x}, x \text { and } y . \tag{3}
\end{equation*}
$$

Given that $y=\frac{1}{2}$ at $x=0$,
(c) find a series solution for y, in ascending powers of x, up to and including the term in x^{3}.
54. In the Argand diagram the point P represents the complex number z.

Given that $\arg \left(\frac{z-2 \mathrm{i}}{z+2}\right)=\frac{\pi}{2}$,
(a) sketch the locus of P,
(b) deduce the value of $|z+1-\mathrm{i}|$.

The transformation T from the z-plane to the w-plane is defined by

$$
w=\frac{2(1+\mathrm{i})}{z+2}, \quad z \neq-2 .
$$

(c) Show that the locus of P in the z-plane is mapped to part of a straight line in the w-plane, and show this in an Argand diagram.
55.

Figure 1

Figure 1 shows a curve C with polar equation $r=4 a \cos 2 \theta, 0 \leq \theta \leq \frac{\pi}{4}$, and a line m with polar equation $\theta=\frac{\pi}{8}$. The shaded region, shown in Figure 1, is bounded by C and m. Use calculus to show that the area of the shaded region is $\frac{1}{2} a^{2}(\pi-2)$.
[FP1 June 2006 Qn 2]
56. Given that $3 x \sin 2 x$ is a particular integral of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 y=k \cos 2 x
$$

where k is a constant,
(a) calculate the value of k,
(b) find the particular solution of the differential equation for which at $x=0, y=2$, and for which at $x=\frac{\pi}{4}, y=\frac{\pi}{2}$.
57. Given that for all real values of r,

$$
(2 r+1)^{3}-(2 r-1)^{3}=A r^{2}+B,
$$

where A and B are constants,
(a) find the value of A and the value of B.
(b) Hence, or otherwise, prove that $\sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)$.
(c) Calculate $\sum_{r=1}^{40}(3 r-1)^{2}$.
58. (a) Use algebra to find the exact solutions of the equation

$$
\begin{equation*}
\left|2 x^{2}+x-6\right|=6-3 x . \tag{6}
\end{equation*}
$$

(b) On the same diagram, sketch the curve with equation $y=\left|2 x^{2}+x-6\right|$ and the line with equation $y=6-3 x$.
(c) Find the set of values of x for which

$$
\left|2 x^{2}+x-6\right|>6-3 x .
$$

59. During an industrial process, the mass of salt, $S \mathrm{~kg}$, dissolved in a liquid t minutes after the process begins is modelled by the differential equation

$$
\frac{\mathrm{d} S}{\mathrm{~d} t}+\frac{2 S}{120-t}=\frac{1}{4}, \quad 0 \leq t<120
$$

Given that $S=6$ when $t=0$,
(a) find S in terms of t,
(b) calculate the maximum mass of salt that the model predicts will be dissolved in the liquid at any one time during the process.
60. (a) Find the Taylor expansion of $\cos 2 x$ in ascending powers of $\left(x-\frac{\pi}{4}\right)$ up to and including the term in $\left(x-\frac{\pi}{4}\right)^{5}$.
(b) Use your answer to (a) to obtain an estimate of $\cos 2$, giving your answer to 6 decimal places.
61. (a) Use de Moivre's theorem to show that

$$
\begin{equation*}
\sin 5 \theta=\sin \theta\left(16 \cos ^{4} \theta-12 \cos ^{2} \theta+1\right) . \tag{5}
\end{equation*}
$$

(b) Hence, or otherwise, solve, for $0 \leq \theta<\pi$,

$$
\begin{equation*}
\sin 5 \theta+\cos \theta \sin 2 \theta=0 \tag{6}
\end{equation*}
$$

62. The point P represents a complex number z on an Argand diagram, where

$$
|z-6+3 \mathrm{i}|=3|z+2-\mathrm{i}| .
$$

(a) Show that the locus of P is a circle, giving the coordinates of the centre and the radius of this circle.

The point Q represents a complex number z on an Argand diagram, where

$$
\tan [\arg (z+6)]=\frac{1}{2} .
$$

(b) On the same Argand diagram, sketch the locus of P and the locus of Q.
(c) On your diagram, shade the region which satisfies both

$$
\begin{equation*}
|z-6+3 \mathrm{i}|>3|z+2-\mathrm{i}| \text { and } \tan [\arg (z+6)]>\frac{1}{2} . \tag{2}
\end{equation*}
$$

63. Obtain the general solution of the differential equation

$$
x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=\cos x, \quad x>0
$$

giving your answer in the form $y=\mathrm{f}(x)$.
64. (a) Show that

$$
\begin{equation*}
\frac{r^{3}-r+1}{r(r+1)} \equiv r-1+\frac{1}{r}-\frac{1}{r+1}, \quad \text { for } r \neq 0,-1 \text {. } \tag{3}
\end{equation*}
$$

(b) Find $\sum_{r=1}^{n} \frac{r^{3}-r+1}{r(r+1)}$, expressing your answer as a single fraction in its simplest form.
65. Figure 1

Figure 1 shows a sketch of the curve with equation

$$
y=\frac{x^{2}-1}{|x+2|}, \quad x \neq-2
$$

The curve crosses the x-axis at $x=1$ and $x=-1$ and the line $x=-2$ is an asymptote of the curve.
(a) Use algebra to solve the equation $\frac{x^{2}-1}{|x+2|}=3(1-x)$.
(b) Hence, or otherwise, find the set of values of x for which

$$
\begin{equation*}
\frac{x^{2}-1}{|x+2|}<3(1-x) . \tag{3}
\end{equation*}
$$

66. A scientist is modelling the amount of a chemical in the human bloodstream. The amount x of the chemical, measured in $\mathrm{mg} l^{-1}$, at time t hours satisfies the differential equation

$$
2 x \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}-6\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}=x^{2}-3 x^{4}, \quad x>0
$$

(a) Show that the substitution $y=\frac{1}{x^{2}}$ transforms this differential equation into

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+y=3 \tag{I}
\end{equation*}
$$

(b) Find the general solution of differential equation [I].

Given that at time $t=0, x=\frac{1}{2}$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=0$,
(c) find an expression for x in term of t,
(d) write down the maximum value of x as t varies.

Figure 2 shows a sketch of the curve C with polar equation

$$
r=4 \sin \theta \cos ^{2} \theta, \quad 0 \leq \theta<\frac{\pi}{2} .
$$

The tangent to C at the point P is perpendicular to the initial line.
(a) Show that P has polar coordinates $\left(\frac{3}{2}, \frac{\pi}{6}\right)$.

The point Q on C has polar coordinates $\left(\sqrt{ } 2, \frac{\pi}{4}\right)$.
The shaded region R is bounded by $O P, O Q$ and C, as shown in Figure 2.
(b) Show that the area of R is given by

$$
\begin{equation*}
\int_{\frac{\pi}{6}}^{\frac{\pi}{4}}\left(\sin ^{2} 2 \theta \cos 2 \theta+\frac{1}{2}-\frac{1}{2} \cos 4 \theta\right) \mathrm{d} \theta \tag{3}
\end{equation*}
$$

(c) Hence, or otherwise, find the area of R, giving your answer in the form $a+b \pi$, where a and b are rational numbers.
68. Find the set of values of x for which

$$
\begin{equation*}
\frac{x+1}{2 x-3}<\frac{1}{x-3} \tag{7}
\end{equation*}
$$

69.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}-y \tan x=2 \sec ^{3} x .
$$

Given that $y=3$ at $x=0$, find y in terms of x.
70. (a) Show that $(r+1)^{3}-(r-1)^{3} \equiv 6 r^{2}+2$.
(b) Hence show that $\sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)$.
(c) Show that $\sum_{r=n}^{2 n} r^{2}=\frac{1}{6} n(n+1)(a n+b)$, where a and b are constants to be found.
71. For the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=2 x(x+3)
$$

find the solution for which at $x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=1$ and $y=1$.
72. (a) Sketch the curve C with polar equation

$$
\begin{equation*}
r=5+\sqrt{ } 3 \cos \theta, \quad 0 \leq \theta<2 \pi . \tag{2}
\end{equation*}
$$

(b) Find the polar coordinates of the points where the tangents to C are parallel to the initial line $\theta=0$. Give your answers to 3 significant figures where appropriate.
(c) Using integration, find the area enclosed by the curve C, giving your answer in terms of π.
73. $\left(1-x^{2}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=0$.
At $x=0, y=2$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=-1$.
(a) Find the value of $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}$ at $x=0$.
(b) Express y as a series in ascending powers of x, up to and including the term in x^{3}.
74. (a) Given that $z=\cos \theta+\mathrm{i} \sin \theta$, use de Moivre's theorem to show that

$$
\begin{equation*}
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta \tag{2}
\end{equation*}
$$

(b) Express $32 \cos ^{6} \theta$ in the form $p \cos 6 \theta+q \cos 4 \theta+r \cos 2 \theta+s$, where p, q, r and s are integers.
(c) Hence find the exact value of $\int_{0}^{\frac{\pi}{3}} \cos ^{6} \theta \mathrm{~d} \theta$.
75. The transformation T from the z-plane, where $z=x+\mathrm{i} y$, to the w-plane, where $w=u+\mathrm{i} v$, is given by

$$
w=\frac{z+\mathrm{i}}{z}, \quad z \neq 0
$$

(a) The transformation T maps the points on the line with equation $y=x$ in the z-plane, other than $(0,0)$, to points on a line l in the w-plane. Find a cartesian equation of l.
(b) Show that the image, under T, of the line with equation $x+y+1=0 \square \square$ n the z-plane is a circle C in the w-plane, where C has cartesian equation

$$
\begin{equation*}
u^{2}+v^{2}-u+v=0 . \tag{7}
\end{equation*}
$$

(c) On the same Argand diagram, sketch l and C.
76. Solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}-3 y=x
$$

to obtain y as a function of x.
[FP1 January 2008 Qn 1]
77. (a) Simplify the expression $\frac{(x+3)(x+9)}{x-1}-(3 x-5)$, giving your answer in the form $\frac{a(x+b)(x+c)}{x-1}$, where a, b and c are integers.
(b) Hence, or otherwise, solve the inequality

$$
\begin{equation*}
\frac{(x+3)(x+9)}{x-1}>3 x-5 \tag{4}
\end{equation*}
$$

78. (a) Express $\frac{5 r+4}{r(r+1)(r+2)}$ in partial fractions.
(b) Hence, or otherwise, show that

$$
\begin{equation*}
\sum_{r=1}^{n} \frac{5 r+4}{r(r+1)(r+2)}=\frac{7 n^{2}+11 n}{2(n+1)(n+2)} . \tag{5}
\end{equation*}
$$

79. (a) Find the general solution of the differential equation

$$
\begin{equation*}
3 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} x}-2 y=x^{2} . \tag{8}
\end{equation*}
$$

(b) Find the particular solution for which, at $x=0, y=2$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=3$.
80.

Figure 1

Figure 1 shows the curve C_{1} which has polar equation $r=a(3+2 \cos \theta), 0 \leq \theta<2 \pi$, and the circle C_{2} with equation $r=4 a, 0 \leq \theta<2 \pi$, where a is a positive constant.
(a) Find, in terms of a, the polar coordinates of the points where the curve C_{1} meets the circle C_{2}.

The regions enclosed by the curves C_{1} and C_{2} overlap and this common region R is shaded in the figure.
(b) Find, in terms of a, an exact expression for the area of the shaded region R.
(c) In a single diagram, copy the two curves in Figure 1 and also sketch the curve C_{3} with polar equation $r=2 a \cos \theta, 0 \leq \theta<2 \pi$. Show clearly the coordinates of the points of intersection of C_{1}, C_{2} and C_{3} with the initial line, $\theta=0$.
81. (a) Find, in terms of k, the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathbf{d}^{2} x}{d t^{2}}+4 \frac{d x}{d t}+3 x=k t+5, \quad \text { where } k \text { is a constant and } t>0 \tag{7}
\end{equation*}
$$

For large values of t, this general solution may be approximated by a linear function.
(b) Given that $k=6$, find the equation of this linear function.
82. (a) Find, in the simplest surd form where appropriate, the exact values of x for which

$$
\begin{equation*}
\frac{x}{2}+3=\left|\frac{4}{x}\right| . \tag{5}
\end{equation*}
$$

(b) Sketch, on the same axes, the line with equation $y=\frac{x}{2}+3$ and the graph of $y=\left|\frac{4}{x}\right|, x \neq 0$.
(c) Find the set of values of x for which $\frac{x}{2}+3>\left|\frac{4}{x}\right|$.
83. (a) Express $\frac{2}{(r+1)(r+3)}$ in partial fractions.
(b) Hence prove, by the method of differences, that

$$
\sum_{r=1}^{n} \frac{2}{(r+1)(r+3)}=\frac{n(a n+b)}{6(n+2)(n+3)}
$$

where a and b are constants to be found.
(c) Find the value of $\sum_{r=21}^{30} \frac{2}{(r+1)(r+3)}$, to 5 decimal places.
84. (a) Show that the substitution $y=v x$ transforms the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x}{y}+\frac{3 y}{x}, \quad x>0, \quad y>0 \tag{I}
\end{equation*}
$$

into the differential equation

$$
\begin{equation*}
x \frac{\mathrm{~d} v}{\mathrm{~d} x}=2 v+\frac{1}{v} . \tag{II}
\end{equation*}
$$

(b) By solving differential equation (II), find a general solution of differential equation (I) in the form $y=\mathrm{f}(x)$.

Given that $y=3$ at $x=1$,
(c) find the particular solution of differential equation (I).
85.

Figure 1
The curve C shown in Figure 1 has polar equation

$$
r=4(1-\cos \theta), \quad 0 \leq \theta \leq \frac{\pi}{2} .
$$

At the point P on C, the tangent to C is parallel to the line $\theta=\frac{\pi}{2}$.
(a) Show that P has polar coordinates $\left(2, \frac{\pi}{3}\right)$.

The curve C meets the line $\theta=\frac{\pi}{2}$ at the point A. The tangent to C at P meets the initial line at the point N. The finite region R, shown shaded in Figure 1, is bounded by the initial line, the line $\theta=\frac{\pi}{2}$, the arc $A P$ of C and the line $P N$.
(b) Calculate the exact area of R.
86.

$$
\begin{equation*}
\left(x^{2}+1\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 y^{2}+(1-2 x) \frac{\mathrm{d} y}{\mathrm{~d} x} . \tag{I}
\end{equation*}
$$

(a) By differentiating equation (I) with respect to x, show that

$$
\begin{equation*}
\left(x^{2}+1\right) \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=(1-4 x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+(4 y-2) \frac{\mathrm{d} y}{\mathrm{~d} x} . \tag{3}
\end{equation*}
$$

Given that $y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=1$ at $x=0$,
(b) find the series solution for y, in ascending powers of x, up to and including the term in x^{3}.
(c) Use your series to estimate the value of y at $x=-0.5$, giving your answer to two decimal places.
87. The point P represents a complex number z on an Argand diagram such that

$$
|z-3|=2|z| .
$$

(a) Show that, as z varies, the locus of P is a circle, and give the coordinates of the centre and the radius of the circle.

The point Q represents a complex number z on an Argand diagram such that

$$
|z+3|=|z-\mathrm{i} \sqrt{ } 3| .
$$

(b) Sketch, on the same Argand diagram, the locus of P and the locus of Q as z varies.
(c) On your diagram shade the region which satisfies

$$
\begin{equation*}
|z-3| \geq 2|z| \text { and }|z+3| \geq|z-\mathrm{i} \sqrt{ } 3| . \tag{2}
\end{equation*}
$$

88. De Moivre's theorem states that

$$
(\cos \theta+\mathrm{i} \sin \theta)^{n}=\cos n \theta+\mathrm{i} \sin n \theta \text { for } n \in \mathbb{R} .
$$

(a) Use induction to prove de Moivre’s theorem for $n \in \mathbb{Z}^{+}$.
(b) Show that

$$
\begin{equation*}
\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta \tag{5}
\end{equation*}
$$

(c) Hence show that $2 \cos \frac{\pi}{10}$ is a root of the equation $x^{4}-5 x^{2}+5=0$.

